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Predictive Line Search: An Efficient Motion Estimation Algorithm
for MPEG-4 Encoding Systems on Multimedia Processors

Yu-Wen Huang, Shyh-Yih Ma, Chun-Fu Shen, and Liang-Gee Chen

Abstract—This paper describes an efficient motion-estimation
algorithm, the predictive line search (PLS), for real-time imple-
mentations of MPEG-4 encoder on multimedia processors. The
motion-vector predictor is used as the starting point in the search
process because the correlation between neighboring motion vec-
tors is strong. The line search pattern is used in the proposed algo-
rithm to reduce the memory access as well as to exploit the special
multimedia processor instructions for sum of absolute difference
calculations. Experimental results show that the performance of
the PLS is very close to that of the full-search (FS) algorithm. Com-
pared with the well-known diamond search and one-dimensional
FS, the PLS shows better performance and robustness, especially
for high motion sequences. A prototype MPEG-4 encoding system
is implemented on a 216-MHz multimedia processor with very long
instruction word architecture to verify the effectiveness of the PLS.
Real-time encoding of MPEG-4 Simple Profile Level 3 (CIF, 30 fps)
can be achieved with only 57% of the processor load.

Index Terms—Motion estimation, multimedia processor, predic-
tive line search (PLS), real-time MPEG-4 encoder.

I. INTRODUCTION

M PEG-4 [1] HAS become one of the dominant standards
for multimedia communication. The main issues ad-

dressed by MPEG-4 are content-based interactivity, universal
accessibility, and improved compression. In order to support
these complex functionalities, the video-coding system must
be built on a platform that is both flexible enough for various
tools and powerful enough to achieve real-time requirements.
Therefore, multimedia processors [2] are the natural choice to
implement such a real-time video-coding system because they
combine the flexibility of programmable processors and the
processing power of parallel architectures.

In almost all video compression standards, including the
MPEG-4 visual part, the block-matching motion estimation is
the most computationally intensive part. The simplest and most
effective method of motion estimation is to exhaustively search
all the candidates in the search range and find a best-matching
position with the lowest distortion; this is called the full search
(FS) algorithm. The distortion measure is usually the sum of
absolute difference (SAD) for its simplicity. If the maximum
allowable displacement for a motion address ispixels, then
there are candidates to compare for each macroblock,
and each comparison needs absolute-difference operations
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if the size of a macroblock is . Thus, FS motion estima-
tion may consume as high as 80% of the total computational
power in a typical video encoding system.

In order to reduce the extremely high complexity of the FS
approach, many fast algorithms for block-matching motion es-
timation have been proposed. The three-step search [3], new
three-step search [4], one-dimensional FS (ODFS) [5], four-step
search [6], block-based gradient descent search [7], center-bi-
ased diamond search (DS) [8], and advanced diamond zonal
search [9] are among the most famous fast algorithms.

These algorithms are designed to search as few candidates as
possible without a significant drop in quality. However, the fea-
tures of the MPEG-4 compression standard and the special ar-
chitecture of multimedia processors are not considered in these
algorithms. Therefore, the “fewest-search-point” criterion for
optimization of the motion estimation may not be feasible for
MPEG-4 video compression systems on multimedia processors.

The goal of this paper is to develop an efficient algorithm
for block-matching motion estimation optimized for real-time
MPEG-4 video coding systems on multimedia processors. The
detailed algorithm is described in the next section, followed by
experimental results, discussions, and a conclusion.

II. PREDICTIVE LINE SEARCH (PLS) ALGORITHM

A. Motion-Vector Prediction

Since fast motion-estimation algorithms will not search all
the candidates in the search range, the distance between the
starting point and the best-matching point is directly related to
the total number of searched candidates and, therefore, to the
complexity.

Many algorithms use the center-biased approach, which starts
from the origin because it is the most probable position for the
best-matching point. However, the algorithm proposed in this
paper, the PLS, starts at the motion-vector predictor to exploit
the characteristics of motion field in nature video and the feature
of MPEG-4 motion-vector coding method.

The coding method for motion vectors in the MPEG-4 stan-
dard is predictive coding. The motion-vector predictor can be
obtained from calculating the medium value of motion vectors
of the three neighboring macroblocks as shown in Fig. 1. Only
the error of motion-vector prediction is coded in the bitstream.
The basic principle for motion-vector prediction is that the mo-
tion field of nature video is gentle, smooth, and varies slowly
[4]. Therefore, the correlation between motion vectors of neigh-
boring macroblocks is very strong.

Fig. 2 shows the distribution of motion vectors and the distri-
bution of motion-vector residues after prediction for Foreman
sequence. The search range is (16, 15) and the macroblock
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Fig. 1. Motion-vector prediction: the predictor for the current macroblock is
the medium of MV1, MV2, and MV3.

(a)

(b)

Fig. 2. Motion-vector distribution for the Foreman sequence. (a) Distribution
of the motion vector. (b) Dtribution of the motion-vector residue after prediction.

size is 16 16, in this case. As we can see in this figure, about
24% of the motion vectors are located at the origin; this makes
the center-biased approach feasible. However, after applying
the MPEG-4 motion-vector prediction, more than 61% of the
motion-vector residues are at the origin. Therefore, if we start
our search from the position of the motion-vector predictor, it
is very likely that the best-matching point can be obtained in
the early stages of the search process and the complexity can
be reduced significantly. Also, since the coded bit length of a
motion-vector residue increases with the distance from the mo-
tion-vector predictor, there is a higher probability of getting
shorter motion-vector codes by starting from the predictor. In
fact, advanced diamond zonal search [9] also adopts this scheme
to further improve the performance, and we will later show the
difference between starting from the origin and starting from the
motion-vector predictor.

B. Considerations for Multimedia Processors

There are three main features of multimedia processors [2],
[10], [11] that may impact the performance of motion estima-
tion. They are: 1) wider data path compared with general pur-
pose processors; 2) subword parallel architecture (SWP) to deal
with multiple pixels simultaneously; and 3) special instructions
for SAD calculation. Compared with general-purpose proces-

(a)

(b)

Fig. 3. Memory access comparison: (a) one-line search for PLS versus
(b) one-point search for DS.

sors, the SAD can be calculated much more efficiently because,
in one clock cycle, the processor is able to execute shift, sub-
tract, absolute, and accumulation operations on many pixels in
parallel.

However, this means the complexity weighting of control
instructions in the motion-estimation algorithm increases in
the multimedia processors because one control instruction
now takes the same time as many SAD operations. For an
algorithm to be efficiently executed on multimedia processors,
the algorithm should be as simple as possible to reduce the
control overhead.

Another issue for efficient motion estimation is data access.
In most of the fast algorithms, the next search position depends
on the result of current search step and can not be obtained in
advance. Since the motion estimation requires massive memory
access, if a fast algorithm has regular search pattern, data reuse
can be applied, and the amount of memory access can be greatly
reduced.

Fig. 3 shows an example of regular data access versus irreg-
ular data access. The macroblock size is 1616 and the search
range is ( 16, 16). Fig. 3(a) shows the amount of data required
for a line search pattern of 33 consecutive points. Most of the
reference pixel data for the next candidate can be obtained by
shifting the current reference pixel data. The total number of
pixels loaded into register is . On
the other hand, for an isolated search point, the data for the cur-
rent macroblock and the reference macroblock are required as
shown in Fig. 3(b). The total number of pixels loaded into regis-
ters is . Compare the 1024 pixels for 33
candidates with the 512 pixels for only one candidate, the line
search pattern is far more efficient in terms of memory access.

C. The Proposed Algorithm

From the considerations of the above two subsections, we
developed our fast algorithm, the PLS algorithm, with simplicity
and regular search pattern in mind.

The PLS algorithm is summarized as follows:
Step 1)Search three consecutive lines of candidates centered

at the motion-vector predictor. If the motion-vector predictor
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Fig. 4. PLS procedure. The search range is (�16, 15), the motion-vector
predictor is (�4,�2), and the best-matching point is (�4,�4) in this example.

locates in line , then all points in line , line , and line
are tested. If the best-matching point calculated is located

in line , go to Step 2), if the best-matching point is in line
, go to Step 3), otherwise, go to Step 4).

Step 2)Let , then test all points in line . If the
best matching point is in line, go to Step 4), otherwise repeat
the current step.

Step 3)Let , then test all points in line . If the
best-matching point is in line, go to Step 4), otherwise repeat
the current step.

Step 4)Report the best-matching point as the position of the
motion vector.

In short, this method starts from searching three lines around
the motion-vector predictor, then searches additional lines in
the direction of descending distortion, and stops when the best-
matching point is not on the boundary of searched lines.

The search procedure is demonstrated by an example as
shown in Fig. 4. Assume that the motion-vector predictor is
( 4, 2), the true motion vector for this macroblock is (4,

4), and the search range is (16, 15). First, they value of the
motion-vector predictor is 2, so all candidates in line1, line

2, and line are searched (a). The best-matching point in
this step is at ( 5, 3), which is on boundary of searched lines
so an additional line is searched (b). The best-matching point
after search line 4 is at ( 4, 4), therefore, line 5 is also
searched (c). Finally, since no candidates in line5 has lower
distortion than position (4, 4), the procedure stops and the
motion vector of ( 4, 4) is found.

III. EXPERIMENTAL RESULTS

A. Simulation Results

In order to evaluate the performance of the PLS, we apply
it to several standard MPEG-4 test sequences. We use two cri-
teria for measuring the performance of motion-estimation al-
gorithms: the mean square error (MSE) and the motion-vector

TABLE I
MSE PERFORMANCECOMPARISON

error rate. The MSE compares the motion-compensated image
frame with the original image frame and calculates the MSE.
The lower the MSE, the smaller the energy of the prediction
error, and therefore the more effective the motion-estimation
algorithm is.

The motion-vector error rate of the fast algorithm is the per-
centage of motion vectors that are different from those obtained
by the full-search algorithm. Since the FS algorithm generates
the optimal results, the error rate shows how close the fast algo-
rithm approaches the optimal solution. Therefore, an efficient
and robust motion-estimation fast algorithm should have lower
MSE and lower motion-vector error rate for all test sequences.

The results of center-biased DS [8] are also shown in the fig-
ures and tables for comparison. It is used for comparison not
only because it has superior balance between simplicity and per-
formance, but also because the MPEG-4 reference software [12]
has adopted it as an alternative to FS algorithm. Predictive di-
amond search (PDS), which starts from the motion-vector pre-
dictor instead of the origin, is also tested to verify the effective-
ness of motion-vector predictors and to fairly compare with the
PLS. One-dimensional full search (ODFS), which is also effi-
cient in memory access, is simulated as well.

Table I shows the MSE performance for PLS, DS, PDS,
ODFS, and FS on eight standard MPEG-4 test sequences.
The search range is (16, 15) in all cases. For sequences
where only small motions are involved, such as News, the
MSE performance of the five algorithms are very close. FS
always has the smallest MSE values, while PLS is better than
DS in all cases. On the other hand, for sequences with large
motions, such as Foreman and Stefan, PLS outperforms DS
significantly, with slightly higher MSE values than the results
of FS. This means that the PLS is very robust, even when
very large motion is involved. If we compare the DS and the
PDS, the effectiveness of choosing motion-vector predictors
as starting points can be clearly seen. The prediction error of
PDS is much smaller than that of DS for sequences with large
motion, such as Foreman and Stefan. However, our PLS still
significantly outperforms PDS for Stefan. As for the ODFS, it
is better than PDS but worse than PLS, on average.

Figs. 5 and 6 show the MSE measure versus the frame number
for Foreman and Stefan sequences. As we can see in these fig-
ures, the MSE values of results from the PLS stay very close to
those from the FS all the time with only small deviations when



114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 1, JANUARY 2003

Fig. 5. MSE comparison between the PLS, the DS, and the FS algorithms. The
input sequence is the Foreman sequence in CIF format

Fig. 6. MSE comparison between the PLS, the DS, and the FS algorithms. The
input sequence is the Stefan sequence in CIF format.

TABLE II
MOTION-VECTORERRORRATE

the motion is very large. On the other hand, the MSE values of
results from the DS rise significantly when sequences have large
motions. Note that the curves of PDS and ODFS are omitted for
clarity. In fact, for most of the frames, the two omitted curves
lie between the curve of PLS and that of DS, and the curve of
PDS is slightly higher than that of ODFS.

Table II shows the comparison of motion-vector error rates
for various algorithms. From the table, we can see that the results
of PLS is the best, especially in fast-moving sequences such as
Foreman and Stefan.

Figs. 7 and 8 show the motion-vector error rates versus the
frame number for the Foreman and Stefan sequences. Both

Fig. 7. Motion-vector error rate comparison between the PLS and the DS
algorithms. The input sequence is the Foreman sequence in CIF format.

Fig. 8. Motion-vector error rate comparison between the PLS and the DS
algorithms. The input sequence is the Stefan sequence in CIF format.

sequences have large motion in the scene and, therefore, are
used to test the robustness of motion-estimation fast algorithms.
From the figures, we can see that the DS is not very reliable
when the scene is moving fast, while the results of PLS stay
very close those of FS. Superior robustness of the PLS is shown
in these figures compared with the DS. Note that again the
curves of PDS and ODFS are omitted for clarity. In fact, for
most of the frames in Foreman, the ranks of MV error rate for
these fast algorithms, from the best to the worst, are PLS, PDS,
DS, and ODFS. For most of the frames in Stefan, the ranks are
PLS, ODFS, PDS, and DS.

B. Discussions

The two main features of the PLS are the predictive start
point and the line search pattern. The effectiveness of these two
methods are analyzed in this subsection.

Table III shows the comparison of the PLS with the center-
biased line search (CBLS). The center-biased line search algo-
rithm is the same as the PLS except that the starting point is
always at the origin. Therefore, this comparison is used to show
the enhancement of a predictive start point. As can be seen in the
table, the MSE performance for the predictive approach is better
than the center-biased approach. The motion-vector error rates
and the search lines of PLS are lower than those of center-bi-
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TABLE III
COMPARISONBETWEEN THEPLSAND THE CBLS

ased line search. The use of predictive starting point is justified
because it brings better performance and lower complexity.

Table IV shows the complexity comparison between the PLS
and the other algorithms. The average number of searched lines
by the PLS is 3.19. Compared with the FS algorithm, which
searches all 32 lines in the search range, the speedup is about
ten times faster.

Although the total number of candidates searched (
) by the PLS is more than those by the DS (15.69)

and those by the PDS (14.01), the memory access for PLS is
only 40% of the memory access needed by the DS and 45%
of the memory access needed by the PDS. The PLS has higher
memory access efficiency than the DS, or than any other fast
algorithm we are aware of.

The ODFS algorithm first searches a horizontal line, followed
by a vertical line, and then a horizontal half line, and finally
a vertical half line. Although the number of lines searched by
ODFS is , which is lower than that of
PLS (3.19), PLS is still more efficient in memory access. This
is because the data reuse of one single line is more efficient than
that of two separated half lines.

The total number of SAD operations that needs to be calcu-
lated is proportional to the total number of searched candidates,
so the computational complexity of the PLS is about 6.51 times
higher than that of the DS and 7.28 times higher than that of
the PDS. However, since the PLS has lower memory access and
smaller control overhead, the overall complexity comparison is
platform dependent. On a platform that can calculate the SAD
operations efficiently, the speed of the PLS can approach the
speed of the DS and the PDS.

As for the ODFS, its required number of SAD operations is
slightly lower than that of PLS, but its memory access is slightly
higher than that of PLS. The complexities of these two algo-
rithms are about the same. However, note that PLS has better
performance in the quality of motion-compensated frames.

In Table IV, we assumed the cache is not used for multimedia
processor. In fact, the item of memory access should be re-
placed by “cache and memory access” because multimedia pro-
cessors are equipped with cache to facilitate higher speed of data
transfer. However, even if the cache is considered, data transfer
still leads to the processing bottleneck due to the high efficiency
of SAD calculation in media processors. Furthermore, the size

TABLE IV
COMPLEXITY COMPARISON. (a) SEARCHED CANDIDATES PERMACROBLOCK.

(b) MEMORY ACCESS PERMACROBLOCK

(a)

(b)

of the cache is limited. If the operands are not hit by the cache,
the access time of memory is an order higher than that of the
cache, which means that the reduction of memory access is still
very important.

Due to the gravity, it is found that there is less significant
motion in the vertical direction, so we rotated the standard
sequences by 90to test more cases. The results of MSE
performance, MV error rate, and complexity are shown in
Tables V–VII, respectively. Although the MSE performance
and MV error rate of PLS for rotated sequences are not as good
as those for original sequences, PLS is still significantly better
than other fast algorithms. The complexity of PLS for rotated
sequences rises a little (3.1%), while the other fast algorithms
remain almost the same.

C. System Performance

We have implemented an MPEG-4 encoder on a multimedia
processor, the Equator MAP-CA, which has a very long in-
struction word (VLIW) core running at a clock frequency of
216 MHz. This processor can process the data of 32 pixels in
parallel and has special instructions that can execute shift, sub-
tract, absolute, and accumulation in a single clock cycle. When
running a real-time encoder for MPEG-4 Simple Profile Level
3, which deals with CIF (352 288) format at 30 frames per
second, only 57% of the processing power of the multimedia
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TABLE V
MSE PERFORMANCECOMPARISON FORSEQUENCESROTATED BY 90

TABLE VI
MOTION-VECTORERRORRATE FOR SEQUENCESROTATED BY 90

processor is consumed. The PLS motion estimation is respon-
sible for 58% of the total computation load. Table VIII shows
the run-time profiles for Foreman encoded at a target bit rate of
384 Kbits/s. On average, only 18.88 ms is required to encode
one single frame.

Since the PLS is about ten times faster than the FS algorithm,
it is not possible to run the FS algorithm in real time, even in
such a powerful multimedia processor. The proposed PLS is a
very good alternative.

Fig. 9 shows the peak signal-to-noise ratio (PSNR) of the
Foreman sequence encoded at a target bit rate of 384 Kbits/s.
As shown in the figure, the PSNR results of the PLS are very
close to the results of FS throughout the whole sequence. On
the other hand, the results of the DS deviate from the FS re-
sults when large motions are involved. The PLS can achieve the
performance of the FS algorithm, even when large motions are
involved in the scene.

Fig. 10 shows the rate-distortion curves of the Foreman se-
quence encoded at a target bit rate of 384 Kbits/s for various
motion-estimation algorithms. As shown in the figure, the rate
distortion curve of the PLS is very close to that of FS. On the
other hand, the curve of the DS drops significantly from the FS
results.

IV. CONCLUSION

An efficient motion-estimation algorithm, the PLS, is
described in this paper. The main features of PLS are the
predictive starting point and the line search pattern. This search
algorithm starts at the position of the motion-vector predictor

TABLE VII
COMPLEXITY COMPARISON FORSEQUENCESROTATED BY 90 . (a) SEARCHED

CANDIDATES PERMACROBLOCK. (b) MEMORY ACCESS PERMACROBLOCK

(a)

(b)

TABLE VIII
RUN-TIME PROFILES FORFOREMAN

because strong correlation exists between neighboring motion
vectors. The line search pattern in PLS exploits the data reuse
concept, so the memory access is very efficient compared
with any other algorithm. From the experimental results, the
PSNR performance of the PLS is very close to that of the FS
approach, and the speed of the PLS is also ten times faster. It is
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Fig. 9. PSNR comparison for the MPEG-4 encoder using three different
motion-estimation algorithms: the FS, the PLS, and the DS algorithms. The
input sequence is the Foreman sequence in CIF format and the target bit rate is
384 Kbits/s.

Fig. 10. Rate distortion curves for different motion-estimation algorithms:
the FS, the PLS, and the DS algorithms. The input sequence is the Foreman
sequence in CIF format and the target bit rate is 384 Kbits/s.

also shown that the PLS is more robust than the DS, which is
a very good fast-algorithm adopted by the MPEG-4 reference
software. A real-time encoder for MPEG-4 Simple Profile

Level 3 is implemented on a multimedia processor with the
PLS as the motion-estimation algorithm. The encoding system
consumes 57% of the processing power of a 216-MHz VLIW
processor core while the PLS is responsible for 58% of the
computation load.
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